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ABSTRACT 

A scientific model for the effect of slip speed on peristaltic transport of blood stream has been examined by 

using the Herschel-Bulkley model in an adaptable cylinder. The shut structure arrangements are gotten for 

speed, plug stream speed, and volume transition. It is seen that the effect of yield pressure, adequacy 

proportion, Darcy number, speed slip parameter, flexible parameters and liquid conduct record assumes a 

fundamental job in controlling the motion in a versatile cylinder. The results gained from the stream amounts 

uncover that, the volume transition in an adaptable cylinder diminishes with an expansion in the permeable 

parameter and it increments with an increment in the slip parameter. Further, the consequences of Newtonian, 

Bingham plastic and Power-law models have been displayed graphically and broke down. 
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1.Introduction 
 
Peristalsis is a component started by a dynamic inundation of district pressure and augmentation along the 
dividers of a distensible cylinder. Physiologically, peristaltic siphoning is a trademark neuromuscular property 
of a natural framework in which biofluids are moved along a cylinder by the propulsive improvements of the 
cylinder divider. The peristaltic wonder can be found in the development of the bolus through the throat, 
chyme transport in the stomach related tract, development of spermatozoa in the male regenerative tract, 
pee course through the ureter and stream of blood through little veins. As of late, the examination of 
peristaltic transport of non-Newtonian liquids in different geometric conditions and presumptions has gained 
the consideration of analysts because of their application in creating biomedical gadgets, for example, blood 
siphon and dialysis machine [1].  
 
The instrument of peristalsis has been of consistent energy for certain analysts. Since the underlying 
examination by Latham [2], a couple of test and hypothetical examinations have been done to explore the 
peristaltic movement in different conditions by expecting little wave number, adequacy proportion and 
Reynolds number [3,4]. By inspecting the two-layered power law model, Usha and Ramachandra [5] 
presumed that the positive or negative mean stream was because of the rheology of the fringe layer. 
Likewise, similar examination was completed by Misra and Pandey [6] for the axisymmetric and channel 
stream. Blood comprises of plasma which is a suspension of cells and is in charge of the non-Newtonian 
nature at low shear rates. Along these lines, examines on blood stream, showing the non-Newtonian 
conduct, have pulled in a few analysts. In addition, at low shear rates, blood can be displayed either by Casson 
or Herschel-Bulkley model. Moreover, the utilization of Herschel-Bulkley model over Casson model is 
progressively suitable since it contains one additional parameter (fluctuating liquid conduct file) and is 
substantial for lower estimations of shear rates where the Casson model neglects to clarify the physiological 
conduct of blood. Notwithstanding these, the Herschel-Bulkley model can be utilized to infer Bingham-
plastic, Power-law and Newtonian models for specific estimations of yield pressure and the liquid conduct 
list. The examinations on considering a Herschel-Bulkley liquid for various physiological circumstances has 
been accounted for by different creators [7-9]. As of late, a definite review with respect to peristaltic 
transport of physiological liquids was finished by Thanesh and Kavitha [10].  
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The Poiseuille's law demonstrates that for a liquid which is incompressible, the motion in the cylinder is a 
direct capacity of the weight contrast between the finishes of the inflexible cylinder through which it streams. 
Subsequently, the non-Newtonian liquids comply with Poiseuille's law in the vast majority of the hypothetical 
just as trial thinks about. The nonlinearity in vascular beds of warm blooded animals is doled out to the 
flexible idea of veins and their tremendous distensibility. This adaptable property of veins was first perceived 
by Youthful [11]. Afterward, Rubinow and Keller [12] showed that the scope of the cylinder can be 
constrained by the strain in the dividers and the transmural weight contrast by accepting that the Poiseuille 
law holds locally. Along these lines, there is a necessity for the emotional theory of blood course through 
cylinders which are versatile in nature. In this manner, Vajravelu et al. [13-15] considered the progression of 
blood through corridors and concentrated the diverse physiological practices either by Casson or Herschel-
Bulkley model. The stream examples gotten by the models with inflexible cylinder can't clarify the conduct 
of blood coursing through tightened conduits altogether. Hereafter, it ends up urgent to consider the 
versatility in the present model.It is seen that, in numerous application issues that there exists a slip stream 
comparing to the stream design because of which there is lost bond at the dividers. In this manner, the liquid 
slides along the dividers of the cylinder. This slip stream of liquids is utilized in cleaning of the interior pits 
and counterfeit heart valves. As of late, a few scientists have explored the effect of slip and limit conditions 
on natural and old style liquids in various geometries and setups [16-28].  
 
To the best of the creator's learning, no endeavor has been made to consider the peristaltic transport of 
blood through a flexible cylinder under the impacts of slip speed. This particular examination is useful in 
filling the hole in this direction.The present paper expects to research the impacts of slip speed on the 
peristaltic transport of blood, displayed as a Herschel-Bulkley liquid, through a versatile cylinder. The physical 
amounts related with the numerical model are inspected in the non-dimensional structure, and careful 
arrangements are gotten for speed, plug stream speed, weight and transition. The impact of yield pressure, 
adequacy proportion, permeable parameter, slip parameter, versatile parameters and liquid conduct list on 
motion and weight are broke down and spoke to graphically. The results of the examination may be helpful 
to also grasp the peristaltic development of non-Newtonian progression of blood in tight supply routes. 
 
2. Formulation of the problem 

 
The flow of blood is modeled to be laminar, steady, incompressible, two-dimensional, fully-developed, 

axisymmetric and exhibiting peristaltic motion of Herschel-Bulkley fluid in an elastic tube of radius '( )a z  as 

shown in Fig. 1. The region between 0r   and pr r  is called as plug flow region where 0| |rz  . In the 

region between  pr r and ( , )r a z t , we have 0| |rz  . The change in radius of the tube due to the elastic 

nature is given by "( )a z  and the change due to the peristaltic nature is given as, 

0

2
'( , ) sin ( )a z t a b z ct





 
   

 
        (1) 

where, 0a  is the radius of the tube in the absence of elasticity, b  is the amplitude,  is the wavelength, z
is the axial direction, c  is the wave speed and t  is the time. 

3. Mathematical model and closed form solutions 
 
Considering the long wavelength approximation by neglecting the inertial terms and wall slope, the 

equations of motion in the wave frame of reference which is moving with speed c  is given by 
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Where ' 'r z for Herschel-Bulkley fluid given by [29] 
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The variables are rendered dimensionless by the following transformations 
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Making use of the non-dimensional quantities in Eq. (7), the governing equations (3) and (4) (after dropping 
the primes) takes the form as, 
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where rz  and
0
 are dimensionless shearing and yield stresses, respectively. The corresponding non-

dimensional boundary conditions are [16] 

' at '( , )
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r Da
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is finiteat 0rz r            (11) 

Solving Eqs. (8) and (9) under the boundary conditions (10) and (11), the expression for velocity so obtained 
is given by, 
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   , the upper limit of plug flow region is obtained as 02
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P
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 . Also, by 

using the condition 'rz a   at 'r a  (Bird et al. [30]), we obtain 
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Using relation (13) and by taking p
r r in Eq. (12), the plug flow velocity is obtained as, 
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The instantaneous volume flux Q  across any cross section of the artery is defined as,  
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4. Theoretical determination of flux with an application to flow through an artery 
 
A theoretical calculation of the flux Q  is carried out for an incompressible Herschel-Bulkley fluid through 

an elastic tube of radius ( , ) '( , ) ''( )a t z a t z a z   where '( , )a t z  is the change in radius of the tube due to 

peristalsis and ''( )a z is the change in radius due to the elastic nature. The fluid is assumed to enter the tube 

with a pressure 1p and leaves the tube with pressure 2p , while the pressure outside the tube is 0p . If z  

denotes the distance along the tube from the inlet end, then the pressure ( )p z   in the fluid at z  diminishes 

from 1(0)p p   to 2( )p p  . The tube may contract or expand due to the difference in pressure of the fluid

0( )p z p . Subsequently, the cross section of the tube may have a deformation due to the elastic property 

of the walls. Thus, the difference in pressure influences the conductivity 1  of the tube at z . We consider 

the conductivity 1 1 0[ ( ) ]p z p     to be a known function of the pressure difference 0( ( ) )p z p . This 

conductivity is assumed to be the same as that of a uniform tube having an identical cross section at z . It 
may be the conductivity for either laminar or turbulent flow, depending upon the type of the flow occurring 
at z  in the non-uniform tube. The relation between Q and the pressure gradient is 

1 0( ) KQ p p P                                                (17) 

This connection, which includes Poiseuille's law, is precisely right for a uniform tube. It is approximately right 
for a non-uniform one in which the cross-section changes bit by bit along the tube. It can be reasoned, 
together with correction terms, by an asymptotic analysis of stream in such tubes, in any case, we shall not 
present that analysis. 
Under the considerations of peristaltic motion and the elastic property of the tube wall, we can rewrite Eq. 
(17) as 

3
1 0( ) ( ' '')Kp p F a a                         (18)                           

where, 'a  is the change in radius due to the peristalsis and ''a  is the change in radius due to the elastic 

nature of the tube.  The pressure 0( )p p  at each cross section due to the Poiseuille flow i.e. 0[ ''( )]a p p . 

By taking the inlet condition 1(0)p p  and integrating Eq. (17) gives   
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where, 0' ( )p p z p  . This equation gives ( )p z  in terms of z andQ . Setting 1z   and 2(1)p p  in Eq. (19), 

we get Q  as, 
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Now, using Eq. (18) in Eq. (20), we have 
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Eq. (21) can be solved if we explicitly know the function 0''( )a p p  . If ''a  is known as a function of the 

tension ( '')T a  or stress, then ''( ')a p   can be determined from the equilibrium condition given by [12] 

0

( '')
.

''

T a
p p

a
          (22) 

Rubinow and Keller [12] carried out experimental investigations by controlling static pressure volume 
connection of a 4-cm long piece of a human iliac artery and gave an expression for tension in an elastic 
tube as: 

5
1 2( '') ( '' 1) ( '' 1)T a t a t a        (23) 

Using Eq. (23) with 1 13t  and 2 300t  , Eq. (22) takes the following form: 
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Eq. (21) can be written as 
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Letting 1p p  and 2p p  in Eq. (22) the solutions are obtained for ''
1a  and ''

2a  respectively. Eq. (25) can be 

rewritten as     
1
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It is worth noticing that from Eq. (26) one can obtain the results of Rubinow and Keller [12] as a special 
case of the present model by substituting ' 0, 0,a   0 and 1Da n  . Also, in the absence of 

peristalsis and porous parameter ( ' 0 and 0)a Da  the present results are in well agreement with the 

results of Vajravelu et al. [13, 14]. 
 

5. Results and Discussion 
 

The present paper centers around the peristaltic transport of blood in an adaptable cylinder, displayed as a 

Herschel-Bulkley liquid. From the present examination, one can acquire the aftereffects of Rubinow and 

Keller [12], and Vajravelu et al. [14] as an exceptional case (without speed slip and permeable dividers). The 

results of the model are researched graphically by utilizing the fixed qualities for physiological parameters, 

for example, and  

Fig. 2 demonstrates the variety yield weight on volume motion . It is seen from the assume that an expansion 

in the estimation of abatements the motion in a versatile cylinder. This conduct is relied upon because of 

the nearness of yield pressure present in the model which requires more measure of vitality to start the 

liquid stream and subsequently it diminishes the motion. Fig. 3 delineates the variety of motion along the 

hub of the cylinder for changing sufficiency proportion . It is seen that an expansion in builds the transition 

in a flexible cylinder. Since is the abundancy proportion, an increments in the estimation of results in an 
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expansion in the wave stature which thus expands the transition. Fig. 4 shows the impact of shear thickening 

conduct of blood on the motion. It tends to be seen that the transition increments with the hub separation 

and diminishes with increment in the liquid conduct record . This abatement in transition is because of the 

shear thickening conduct of blood (thickness increments with expanding shear pressure).  

Figs. 5 and 6 demonstrates the conduct of transition with hub areas for various estimations of flexible 

parameters. For a shear thickening liquid , the transition increments with an expansion in the versatile 

parameter (Fig. 5). A similar pattern holds useful for the other parameter, to be specific (Fig. 6). Figs. 7 and 

8 separately investigate the impacts of Darcy number and slip parameter on the motion. From Fig. 7, it is 

seen that an expansion in the estimation of Darcy number reductions the motion. This is mostly a direct 

result of an expansion in the Darcy number, the porosity of the divider increments and along these lines, 

the transition diminishes. Further, an expansion in the slip parameter builds the transition in a versatile 

cylinder (Fig. 8). The transition profiles with bay and outlet flexible span varieties are appeared in Figs. 9 and 

10. For a fixed estimation of outlet sweep, the impact of expanding estimations of channel versatile span 

makes the transition to increment and thus motion increments as the flexible range builds (Fig. 9). In any 

case, the contrary conduct is seen when we fix the delta flexible span and changing outlet versatile sweep 

(Fig. 10).  

The effect of transition with pivotal areas for various liquids is plotted in Fig. 11. From the geometrical 

depiction, it is seen that the transition on account of a Newtonian liquid is more than that of the Bingham, 

Power-law, and Herschel-Bulkley liquid. Also, the transition in the Herschel-Bulkley model is less when 

diverged from substitute models (Newtonian, Power-law, and Bingham). This is because of the nearness of 

yield pressure, and liquid conduct file (shear thickening) present in the Herschel-Bulkley model lessens the 

transition. 

 

 

Fig. 2. Q versus z  for varying  . 
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Fig. 3. Q versus z  for varying  .  

 

Fig. 4. Q versus z  for varying n . 

 

 

Fig. 5. Q versus z  for varying 1t .  
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Fig. 6. Q versus z  for varying 2t .  

 

Fig. 7. Q versus z  for varying Da .  

 

 

Fig. 8. Q versus z  for varying  .  
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Fig. 9.Q versus z  for varying 
''

1a .  

 

 

Fig. 10. Q versus z  for varying 
''

2a .  

 

 

Fig. 11. Q versus z  for different types of fluids. 

 

The effects of , , ,Da n  and   on Pressure gradient along the axis are plotted in Figs. 12-16. From Figs. 12 

and 13, the magnitude of pressure gradient increases with an increase in the values of  and . Moreover, 
an increase in the Da  (porosity of the walls) is accompanied with an increase in the magnitude of the 
pressure gradient (Fig. 14).Fig. 15 gives the variation of pressure gradient along the axis for different values 
of n . It is noticed that an increase in the value of fluid behavior index increases the magnitude of pressure 
gradient. Further, the effect of on pressure gradient shows the opposite behavior as that of n  (Fig. 16). 
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6. Conclusions 
 

The present paper emphasizes on the peristaltic flow of blood in the human circulatory system by using 
Herschel-Bulkley Model in an elastic tube with porous walls. The study provides a satisfactory outcome that 
represents some of the natural phenomena, especially, the flow of blood in narrow arteries which can be 
handled and processed in case of dysfunction. The conclusions can be summarized as follows: 

 The volume flux rate increases with an increase in slip parameter and decreases with an increase in 
the porous parameter. 

 The presence of elastic parameters has a vital role in enhancing the flux. 

 The flux in an elastic tube decreases with an increase in the values of yield stress, fluid behavior index 
and outlet elastic radius, and it increases with an increase in the values of inlet elastic radius and 
amplitude ratio. 
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